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ABSTRACT:  

 
Polynomial translation method for translating Gaussian random variables to non-Gaussian 

random variables has been proposed for more than half centuries. Application of this method has 
also been utilized to many aspects. However, the approximation of parameters of the polynomial 
form cannot provide good estimation when random variables are given large skewness and kurtosis. 
In this research, the approximation method used for the parameter estimation is investigated for 
wider ranges of given skewness and kurtosis, which are observed from the 10 minute mean wind 
speed samples of 155 sites from 1961 to 2002. The proposed simulation process of the estimation of 
annual maximum wind speeds is then modified based on the investigation results. For those extreme 
cases with large observed skewness or kurtosis, the modified simulation process can provide fairly 
good estimation results as normal cases.  
 
1. INTRODUCTION 

 
Edgeworth proposed the 3rd order polynomial form for the non-Gaussian random variables and 

the method of moment has been used for the parameter estimation of the polynomial form. Choi and 
Kanda (2003) discussed the development history of NST and also conducted the practicability of an 
approximation sheet used for the parameter estimation. However, the given skewness and kurtosis 
were only limited to small values. Once the given skewness and kurtosis are larger than certain 
ranges, the calculated skewness and kurtosis from the translated non-Gaussian random variables do 
not fit to the given ones. The approximation sheet mentioned by Choi and Kanda (2003) may not 
provide a wide range of practical application. 

In this research, the ranges of the given skewness and kurtosis are further examined based on a 
testing procedure. The simulation process is then further modified based on the examination results. 
Data from 155 meteorological sites are utilized to the simulation process for the estimation of 
annual maximum wind speeds and the effect of the modification.  
 
2. TEST OF APPLICATION RANGE OF POLYNOMIAL TRANSLATION METHOD 

 
A non-Gaussian random variable, Y, which is given a set of four moments, is written in a 

polynomial form with respect to a standard Gaussian random variable, X as 
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The coefficients of the polynomial form can be obtained from the following nonlinear equations, 
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where γ1 and γ2 are given skewness and unbiased kurtosis. To solve these four nonlinear equations, 
an algorithm like least square method is needed. Table 1 was then proposed to provide the 
approximation of the parameters, a, b, c, d, in equation (1) ~ (5). By using this approximation sheet, 
Choi and Kanda (2003) showed good agreements of the approximation results. 
 

Table 1 Coefficients of the polynomial form: Y = a + bX + cX2 + dX3 
j Tj bj cj dj 

γ2<1.5 γ2>=1.5 γ2<1.5 γ2>=1.5 γ2<1.5 γ2>=1.5 
1 1 1.0000  0.9698  0.0000  0.0012  0.0000  0.0112  
2 γ1 -0.0014  -0.0305  0.1668  0.1566  0.0007  0.0129  
3 γ2 -0.1238  -0.0765  0.0000  -0.0009  0.0412  0.0236  
4 γ1

2 0.1224  0.0558  0.0019  -0.0024  -0.0469  -0.0177  
5 γ2

2 0.0353  0.0054  0.0000  0.0002  -0.0131  -0.0018  
6 γ1

3 -0.0491  -0.0348  0.0653  0.0466  0.0258  0.0216  
7 γ2

3 -0.0085  -0.0002  0.0001  0.0000  0.0033  0.0001  
8 γ1γ2 0.0027  0.0181  -0.0397  -0.0155  -0.0009  -0.0061  
9 γ1

2γ2 -0.0768  -0.0130  0.0178  0.0236  0.0314  0.0087  
10 γ1γ2

2 -0.0075  -0.0041  0.0183  0.0026  0.0021  0.0016  
11 γ1

3γ2 0.0134  0.0029  -0.0068  0.0023  -0.0108  -0.0009  
12 γ1γ2

3 0.0007  0.0003  -0.0018  -0.0002  0.0010  -0.0001  
13 γ1

2γ2
2 -0.0101  -0.0002  -0.0071  -0.0029  0.0018  -0.0005  

14 γ1
2γ2

3 0.0103  0.0001  0.0136  0.0001  0.0002  0.0000  
15 γ1

3γ2
2 -0.0322  -0.0002  -0.0167  -0.0011  0.0165  -0.0001  

16 γ1
3γ2

3 0.0127  0.0000  0.0207  0.0000  -0.0033  0.0000  
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However, the ranges of the given skewness and the kurtosis of the observed data are from 0.0643 

to 2.9687 and from -0.5239 to 21.6440 respectively, which are over the range examined by Choi 
and Kanda (2003). Therefore, to make sure the applicability of this approximation sheet, a testing 
flow is suggested as Figure 1. 
 

 
Figure 1 Testing flow of the parameter estimation based on Table 1 

 
For the given four moments in Figure 1, given mean and standard deviation values are 

determined by the mean of all mean and standard deviation values at 155 sites from 1961 to 2002. 
The given mean value is fixed at 3.0960 and the given standard deviation value is fixed at2.0405. 
Given skewness varies from 0 to 3 with interval equals 0.01 and given kurtosis varies from -5 to 25 
with interval equals 0.1. The number of total combinations of given skewness and kurtosis tested is 
90,601 (301×301).  



 

 
(a)                                         (b) 
  

 
(c)                                         (d) 

Figure 2 Distributions of calculated four moments based on Figure 1: (a) calculated mean;  
(b) calculated standard deviation; (c) calculated skewness; (d) calculated unbiased kurtosis. 

 

 
(a)                                         (b) 

 

 
(c)                                         (d) 

Figure 3 Contour of error percentages of calculated four moments: (a) calculated mean;  
(b) calculated standard deviation; (c) calculated skewness; (d) calculated unbiased kurtosis. 
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To visually inspect the agreements of these 90,601 combinations of given four moments, a 

skewness-kurtosis plane is demonstrated. Figure 2 shows the distributions of the calculated four 
moments on the given skewness-kurtosis plane. Figure 3 shows the contours of error percentages of 
calculated four moments. In Figure 3, when the error is more than 100% or less than -100%, the 
error is assigned 100% or -100% at most. 

Generally speaking, two kinds of combinations can be observed to have significant error 
estimation of parameters: (1) large given skewness with negative given unbiased kurtosis; (2) large 
given unbiased kurtosis. For those given moment values near zero, error percentage is also 
significant because of the definition of error percentage calculation. Combining the observation 
results from Figure 3, a criterion of error percentage is needed when this approximation sheet is 
used for parameter estimation. Figure 4 shows observed skewness and kurtosis on the four contours 
corresponding to four criteria, 5%, 10%, 15%, and 20%. Within the red range of the contour, the 
calculated four moments are considered acceptable for the parameter estimation of polynomial form. 
Among these four contours, 20% criterion is used for the further investigation in this research.  
 

 
 

Figure 4 Different application ranges of calculated four moments based on different criteria:  
 
3. BASIC CHARATERISTICS OF YEARLY AND REGIONALLY VARIATIONS OF FOUR 
MOMENTS 
 

Basic characteristics of four moments observed from the 155 sites were examined by Kanda and 
Lo (2009) yearly and regionally. A linear relation between skewness and kurtosis is confirmed by 
calculating the correlation coefficients of 155 sites. The mean value of the 155 correlation 
coefficients is 0.9088 and the standard deviation is 0.0453, which indicates the high correlation 
exists in most sites (Table 2). Figure 5 shows the histograms of moment parameters of 155 sites. 
Mean and standard deviation of four moments are calculated to represent each site’s characteristics. 
In some sites the standard deviation of four moments is close to zero which suggests the identical 
nature for parent distributions, but in most sites the standard deviation is significant so that the 
identical hypothesis would not be applied. 

Probability distributions of four moments for 155 sites are also plotted. Figure 6 shows two 
examples of the probability distributions of observed skewness and kurtosis. Among 155 sites, 106 
sites tend to have lognormal distribution for skewness while 108 sites for kurtosis. 
 

Table 2 The mean and the standard deviation of 155 correlation coefficients between four moments 
 μ-σ μ-γ1 μ-γ2 σ-γ1 σ-γ2 γ1-γ2 

mean of 155 coefficients 0.5894  -0.0853  -0.0581  0.1681  0.0846  0.9088  
S.D. of 155 coefficients 0.3328  0.3007  0.2598  0.3164  0.2748  0.0453  

 



 
(a) E(μ)          (b) E(σ)         (c) E(γ1)           (d) E(γ2) 

 

 
(e) σ(μ)          (f) σ(σ)         (g) σ(γ1)           (h) σ(γ2) 

 
Figure 5 Histograms of moment parameters of 155 meteorological sites 

 

    
Nagoya (skewness)                    Nagoya (kurtosis) 

 

    
  Ishigakijima (skewness)                Ishigakijima (kurtosis) 

 
Figure 6 Probability distributions of skewness and kurtosis 

 
4. SIMULATION PROCESS AND ITS MODIFICATION 

 
The simulation process for the estimation of annual maximum wind speeds proposed by Kanda 

and Lo (2009) is applied to 155 sites. Figure 7 shows the simulation process.  
Basic characteristics of four moments mentioned in the previous section are concerned in the 

simulation process. To test the agreement of estimation results, many conditions are considered in 
the simulation process. For the generation of given skewness and kurtosis in the second step, the 
given skewness and kurtosis can be independent or fully-correlated. Further, the assumption of the 
probability distributions of given skewness and kurtosis can be normal or lognormal. 



 

    
 
Figure 7 Simulation process of estimation of annual               Figure 8 Upper and lower truncation 

maximum wind speeds                                       boundaries 
 
  Since Figure 4 shows that there are many observed skewness and kurtosis outside the application 
range with 20% criterion, generation of given skewness and kurtosis in some sites may lead to 
significant error in estimation results. Therefore, modification of the extremely large skewness and 
kurtosis should be considered and added to the simulation process. Figure 8 shows the upper and 
lower truncation boundaries of 20% criterion. When the given kurtosis is generated, the value is 
checked to be inside the application range. Any generated given kurtosis outside the range is 
neglected in the simulation. For a more strict limitation, other criteria can be used. However, 20% is 
preliminarily taken as a trial in this research. 
  Simulation process shown in Figure 7 is repeated for 11 times and then the median values at 
every reduced variate are picked up as the best estimation results. Given skewness and kurtosis 
generated based on different assumptions are plotted on the 20% application range for 11 times. 
Calculated skewness and kurtosis from the simulated non-Gaussian yearly samples are also plotted 
for 11 times. 
 
5. ESTIMATION RESULTS OF SEVRAL METEORILOGICAL SITES 
 

Several of 155 sites are illustrated in Figure 9 ~ 11. Among these estimation results, Tokyo is 
considered as a normal case since there is no observed skewness and kurtosis outside the 20% 
application range. Other two sites, Kagoshima and Ishigakijima, are considered as extreme cases for 
lots of their observed skewness and kurtosis values are outside the range. 

 



       
(a) Estimation results (not modified simulation)      (b) Estimation results (modified simulation) 

 

   
(c)-1 Given γ1 and γ2    (c)-2 Calculated γ1 and γ2      (d)-1 Given γ1 and γ2    (d)-2 Calculated γ1 and γ2  

(not modified simulation)                             (modified simulation) 
 

Figure 9 Estimation results of Tokyo 
 

       
(a) Estimation results (not modified simulation)      (b) Estimation results (modified simulation) 

 

   
(c)-1 Given γ1 and γ2    (c)-2 Calculated γ1 and γ2      (d)-1 Given γ1 and γ2    (d)-2 Calculated γ1 and γ2  

(not modified simulation)                             (modified simulation) 
 

Figure 10 Estimation results of Kagoshima 
 



       
(a) Estimation results (not modified simulation)      (b) Estimation results (modified simulation) 

 

   
(c)-1 Given γ1 and γ2    (c)-2 Calculated γ1 and γ2      (d)-1 Given γ1 and γ2    (d)-2 Calculated γ1 and γ2  

(not modified simulation)                             (modified simulation) 
 

Figure 11 Estimation results of Ishigakijima 
 

Table 3 Moment parameters of Tokyo, Kagoshima, and Ishigakijima 
 E(μ) E(σ) E(γ1) E(γ2) σ(μ) σ(σ) σ(γ1) σ(γ2) 

Tokyo 3.2724 1.8067 1.1509 2.1486 0.2412 0.1699 0.2225 1.0384 
Kagoshima 2.8272 1.6471 1.3456 4.6173 0.3144 0.1501 0.3812 4.3350 
Ishigakijima 4.5129 2.1467 1.2808 6.3152 0.3787 0.2263 0.6496 6.4729 

 
In Figure 9 ~ 11, the generations of given skewness and kurtosis are assumed as three conditions: 

(1) I: independently normal distributed; (2) N: fully correlated and normal distributed; and (3) L: 
fully correlated and lognormal distributed. Table 3 lists the moment parameters of each site. 

Generally from Figure 9~11, it is observed that fully-correlated skewness and kurtosis are 
generally better than independent ones. Further, a lognormal distribution for generation of skewness 
and kurtosis is better than a normal one in Kagoshima and Ishigakijima. It seems better to assume a 
lognormal distribution when the moment parameters, E(γ2) and σ(γ2), are relatively large. 
Comparing the truncated estimation results with not truncated ones, it is observed that the tails of 
estimation results are so suppressed that differences between condition I, N, and L are small. Given 
skewness and kurtosis in the truncated cases are limited inside the application range. Some of 
calculated skewness and kurtosis are outside the range because of 20% error acceptable.   

Though it seems the simulation process with truncation in condition I, N, or L can always 
provide a fairly good agreement of estimation results, the tail part is sometimes under-estimated, 
especially in those extreme cases. The possibility of generating a large skewness and kurtosis based 
on large E(γ2) and σ(γ2) should not be ignored by truncation in the simulation process. A better 
method to estimate parameters of polynomial translation method combined with condition L may 
provide a universal simulation process for all the cases.  
 
6. CONCLUSIONS 
 
The approximation sheet proposed by Edgeworth was verified not suitable when the given 
skewness and kurtosis are extremely large. Observed skewness and kurtosis of 155 sites were 



plotted to see the general distribution on the application range of parameter estimation. Simulation 
process with truncation was introduced and several conditions were concerned based on basic 
characteristics observed four moments. For those sites with large observed skewness and kurtosis, a 
lognormal distribution of skewness and kurtosis is better than normal distribution. Simulation 
process with truncation may improve the agreement of the estimation results. However, truncation 
also causes under-estimation in those extreme cases. A more general application for the parameter 
estimation of the polynomial form should be investigated for a more universal practicality.  
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